2.4GHz 0.35-μm CMOS全集成线性功率放大器方案
时间:2023-10-14 15:20来源: 作者: 点击: 次摘要:片上系统射频功率放大器是射频前端的重要单元。通过分析和对比各类功率放大器的特点,电路采用SMIC0.-μm工艺设计2.4 GHz WLAN全线性功率放大器。论文中设计的功率放大器采用不同结构的两级放大,驱动级采用共源共栅A类结构组成,输出级采用共源级大MOSFET管组成。电路采用SMIC 0.-μm RF 模型用Candence公司的spectreRF工具进行模拟。根据模拟结果,设计的射频功率放大器工作稳定,在3.3 V工作电压下,1dB压缩点输出功率约为25 dBm,输入功率0 dBm时,输出功率为25.22 dBm。
关键词:无线局域网;稳定性;负栽线匹配;稳定性技术
CMOS工艺由于低功耗,相对其他工艺简单,在数字电路设计中优势明显。近年来,由于CMOS工艺的提高,特征尺寸不断减小,截止频率已经达到几十赫兹,完全能满足RFIC的设计,应用CMOS工艺设计射频模拟电路成为可能。由于模拟CMOS工艺与数字CMOS工艺兼容,极大地降低了射频模拟设计的成本。随着无线通信的发展,运行于2.4 GHz的ISM频段的无线局域网WLAN得到迅速发展。基于IEEE 802.11b标准的无线局域网由于其11 Mb/s的高传速率满足了当前主流用户的要求,发展尤为迅速。由于应用CMOS工艺设计射频模拟电路成本的降低和客户的大量需求,用CMOS工艺实现RFIC设计成为近年来国际上的研究热点。
随着CMOS工艺的发展,特征尺寸不断减小,CMOS器件的高频性能得到了提高,同时也给RFIC设计带来了一些挑战,如氧化层击穿电压降低,电流驱动能力变弱,衬底耦合严重等。虽然在一个发射机中,低噪声放大器、振荡器、混频器已经解决了采用CMOS技术的问题,但功率放大器的集成问题已成为制约单片集成发射机设计的主要因素。从耐压性能考虑,晶体管氧化层耐压能力的降低,降低了输出级电压的摆幅;电子驱动能力的变弱降低了漏极电流数值;另外功率放大器的功耗也是限制其难以集成的原因。
1 射频功率放大器设计
射频功率放大器分线性和非线性放大器。非线性放大器的效率高,但线性度差,而且结构复杂。本设计采用线性的A类放大器结构,电路简单,线性度好,有利于设计出稳定工作的功率放大器。设计要求电路能够在2.中心频率,带宽为100 MHz,在输入功率为0dBm时,输出功率20 dBin,输入反射系数S11-10dB。
1.1 输入匹配网络设计
由于晶体管输入阻抗是复数,为了实现输入阻抗与信号源阻抗匹配,必须进行输入匹配网络设计。综合考虑输入级晶体管和偏置电路的影响,本设计输入匹配网络采用T形匹配网络,通过仿真,输入端反射系数达到S11-14dB。
1.2 输出匹配网络设计
由于CMOS晶体管受最大承受电压和最大输出电流的限制,为了充分利用电压源提供功率的能力,输出匹配网络采用负载线匹配技术,如图1所示。分析射频功率放大器的性能要求,确定晶体管最大输出电流,根据晶体管的性能确定最大输出电压。本次设计首先通过计算确定负载线电阻的大概取值,然后经参数扫描确定最优负载线电阻,以此负载线电阻确定输出匹配网络各个参数。经过优化负载线电阻为6Ω。输出匹配网络采用L匹配。
1.3 级间匹配网络设计
本设计采用A类单端两级放大结构实现,第一级采用共源共栅结构,共源共栅级特点是高电压增益,第二级采用共源结构,共源级特点是大摆幅,根据各级电路特点,分配功率增益;然后根据功率分配确定第一级的最优输出负载和第二级的最优输入负载。通过测试输入级的输出最优负载为160Ω,输出级的最优输入阻抗为10Ω,以此为条件设计级间匹配网络。