基于OFDM系统的频域同步估计技术
时间:2023-09-29 10:35来源: 作者: 点击: 次部分概述
正交频分复用()的一个重要问题是对频率偏移非常敏感,很小的频率偏移都会造成性能的严重下降。另外收发端采样钟不匹配,也会导致有用数据信号相位旋转和幅度衰减,破坏了子载波间的正交性,降低性能。因此在系统中,频率偏移和采样钟偏移的准确度至关重要。
OFDM接收系统的部分主要包括以下几方面:频率、采样钟同步和符号定时同步。载波频率偏移和采样钟频率偏移的存在导致了载波间干扰(ICI)和采样点增减现象,这就需要频率同步和采样钟同步。同时在解调过程中,接收机是在时域上的任意点开始接收数据的,而OFDM是符号的,这就需要检测到符号的起始位置,否则会因为符号的起始位置的不合理,而导致符号间的干扰(ISI),这就是符号定时同步。
频域同步方法
整数倍频率偏移算法
频率偏移△f0分成两部分:整数倍和小数倍子载波间隔频偏。由于在时域上已经对小数倍频偏有一个粗略估计和校正,因此频域内是利用内插导频信息对整数倍频偏和剩余小数倍频偏进行估计校正的。
(1)
式(1)是整数倍频率偏移估计算法表达式,它是利用连续导频在发射端为已知固定相位的特性,使用一个长为S的滑动窗作为频域上一个OFDM符号有效载波起始位置的估计范围,以窗内的每一个数据作为OFDM符号有效载波的的起始位置,对前后两个符号在假设的连续导频位置上的复数据做相关求和,这样就得到了S个相关值,其中最大值所对应的s即为频域上一个OFDM符号有效载波起始位置的估计值,也即为整数倍频偏估计值。
其中L是连续导频个数;ak是一个符号内第k个连续导频的序号;Yl,ak是FFT输出的第l个符号的假设第k个连续导频位置上的复数值;S是整数倍频偏的估计范围,也即为滑动窗长,s是窗口移动值,s∈S;
是S路相关和的最大值,其对应的s即为整数倍频偏的估计值。
小数倍频率偏移和采样钟频率偏移估计算法
在OFDM系统的接收端,实际的第m个子载波的实际解调频率为f'm=f'0+mF',这里,f'0为本地解调载波频率,F)=F'0N,N为子载波个数,F'0为接收机压控晶振输出的采样频率。由此可以看出,在第m个子载波上,载波频偏和采样钟偏移的联合效应是大小等于△fm的子载波频偏,这里△fm=△f0+m?△F0N,△f0=f'0-f0,△F0=F'0-F0,f0和F0分别为发射端的中心载波频率和采用频率。当将整偏校掉后,这里的△f0仅为小数倍的子载波间隔。
设pi为导频点位置,pi∈P,P为导频点位置集合;i=0,1,…,K-1,K是P的基数;△fpi为第pi个导频点上相关结果的频率部分,这个值以下用表示为估计结果。定义
,同时考虑到在第pi个子载波上的估计误差ei,则:
(2)
其中,△fpi为在第pi个导频点上的频率偏移和采样钟偏移之和,现令
为所需估计的向量参数,式(2)就可以写作:
(3)
其中,
由于估计是的,因此将向量V称为观察向量,方程式(3)称为观察方程。线性最小平方估计就是在观察向量给定的条件下,根据观察方程估计向量。根据最大似然估计原理,使得向量V的线性函数取得最小值时,得出的估计值。对式
求导并使之为零,可得:(4)
公式(3)是在先得出
,i=0,...,K-1的基础上求得的,而
可以通过在导频位置对前后两个OFDM符号做相关运算来求。
频域符号定时偏移估计算法
时域定时的不准确就要求频域内进一步对OFDM符号定时进行校正。由于时域内保护间隔是数据信号最后L个采样点的完全复制,所以由FFT循环移位定理可知:符号定时的偏移所引起的子载波上相位旋转和子载波序号k成正比。由于导频信号插入位置已知,且其具有相位已知特性,这使得我们可以利用符号内插导频载波间相位变化来做细符号定时同步,并与粗符号定时同步结合起来,得到一个准确的符号起始位置。
设是第j个OFDM符号定时偏移在相邻导频点上所引起的相位偏移之差,为第j个OFDM符号所估计出来的细定时。则和
可表示为:
(5)
(6)
其中,L为散布导频个数;N为一个OFDM符号中有效子载波的个数;Xj,k是第j个符号的第k个散布导频复值;△k为两个相邻的子载波序号的差值。
频域同步部分的FPGA电路实现模块
频域同步电路模块各单元的工作原理如图3.1所示。这里使用Altera公司生产的StratixⅡEP2S60的FPGA芯片来实现。
图3.1 FFT后同步块方框图
FFT模块输出复数据经过一个OFDM符号的FIFO模块延迟后,和当前的OFDM复数据进行相关,以实现在整数倍频偏估计和小数倍频率偏移算法中所需要的前后两个符号的对应导频相关运算,其相关结果为32位的复数据。
整数倍频率偏移估计模块
将相关单元输出的复数据的实虚部符号位送到整数倍频偏估计单元中进行整数倍频偏估计。为了节省芯片资源,这里我们将估计整数倍频偏的算法加以简化,用相关后的复数据在导频位置上的实虚部的符号位来估计整数倍频偏值。下面的仿真的电路波形图证明这样实现整偏估计算法是可行的。它的输入为相关单元输出的复数据实虚部的符号位和此复数据的载波同步位置,输出为整数倍频偏估计值。
正交频分复用()的一个重要问题是对频率偏移非常敏感,很小的频率偏移都会造成性能的严重下降。另外收发端采样钟不匹配,也会导致有用数据信号相位旋转和幅度衰减,破坏了子载波间的正交性,降低性能。因此在系统中,频率偏移和采样钟偏移的准确度至关重要。
OFDM接收系统的部分主要包括以下几方面:频率、采样钟同步和符号定时同步。载波频率偏移和采样钟频率偏移的存在导致了载波间干扰(ICI)和采样点增减现象,这就需要频率同步和采样钟同步。同时在解调过程中,接收机是在时域上的任意点开始接收数据的,而OFDM是符号的,这就需要检测到符号的起始位置,否则会因为符号的起始位置的不合理,而导致符号间的干扰(ISI),这就是符号定时同步。
频域同步方法
整数倍频率偏移算法
频率偏移△f0分成两部分:整数倍和小数倍子载波间隔频偏。由于在时域上已经对小数倍频偏有一个粗略估计和校正,因此频域内是利用内插导频信息对整数倍频偏和剩余小数倍频偏进行估计校正的。
(1)
式(1)是整数倍频率偏移估计算法表达式,它是利用连续导频在发射端为已知固定相位的特性,使用一个长为S的滑动窗作为频域上一个OFDM符号有效载波起始位置的估计范围,以窗内的每一个数据作为OFDM符号有效载波的的起始位置,对前后两个符号在假设的连续导频位置上的复数据做相关求和,这样就得到了S个相关值,其中最大值所对应的s即为频域上一个OFDM符号有效载波起始位置的估计值,也即为整数倍频偏估计值。
其中L是连续导频个数;ak是一个符号内第k个连续导频的序号;Yl,ak是FFT输出的第l个符号的假设第k个连续导频位置上的复数值;S是整数倍频偏的估计范围,也即为滑动窗长,s是窗口移动值,s∈S;
是S路相关和的最大值,其对应的s即为整数倍频偏的估计值。
小数倍频率偏移和采样钟频率偏移估计算法
在OFDM系统的接收端,实际的第m个子载波的实际解调频率为f'm=f'0+mF',这里,f'0为本地解调载波频率,F)=F'0N,N为子载波个数,F'0为接收机压控晶振输出的采样频率。由此可以看出,在第m个子载波上,载波频偏和采样钟偏移的联合效应是大小等于△fm的子载波频偏,这里△fm=△f0+m?△F0N,△f0=f'0-f0,△F0=F'0-F0,f0和F0分别为发射端的中心载波频率和采用频率。当将整偏校掉后,这里的△f0仅为小数倍的子载波间隔。
设pi为导频点位置,pi∈P,P为导频点位置集合;i=0,1,…,K-1,K是P的基数;△fpi为第pi个导频点上相关结果的频率部分,这个值以下用表示为估计结果。定义
,同时考虑到在第pi个子载波上的估计误差ei,则:
(2)
其中,△fpi为在第pi个导频点上的频率偏移和采样钟偏移之和,现令
为所需估计的向量参数,式(2)就可以写作:
(3)
其中,
由于估计是的,因此将向量V称为观察向量,方程式(3)称为观察方程。线性最小平方估计就是在观察向量给定的条件下,根据观察方程估计向量。根据最大似然估计原理,使得向量V的线性函数取得最小值时,得出的估计值。对式
求导并使之为零,可得:(4)
公式(3)是在先得出
,i=0,...,K-1的基础上求得的,而
可以通过在导频位置对前后两个OFDM符号做相关运算来求。
频域符号定时偏移估计算法
时域定时的不准确就要求频域内进一步对OFDM符号定时进行校正。由于时域内保护间隔是数据信号最后L个采样点的完全复制,所以由FFT循环移位定理可知:符号定时的偏移所引起的子载波上相位旋转和子载波序号k成正比。由于导频信号插入位置已知,且其具有相位已知特性,这使得我们可以利用符号内插导频载波间相位变化来做细符号定时同步,并与粗符号定时同步结合起来,得到一个准确的符号起始位置。
设是第j个OFDM符号定时偏移在相邻导频点上所引起的相位偏移之差,为第j个OFDM符号所估计出来的细定时。则和
可表示为:
(5)
(6)
其中,L为散布导频个数;N为一个OFDM符号中有效子载波的个数;Xj,k是第j个符号的第k个散布导频复值;△k为两个相邻的子载波序号的差值。
频域同步部分的FPGA电路实现模块
频域同步电路模块各单元的工作原理如图3.1所示。这里使用Altera公司生产的StratixⅡEP2S60的FPGA芯片来实现。
图3.1 FFT后同步块方框图
FFT模块输出复数据经过一个OFDM符号的FIFO模块延迟后,和当前的OFDM复数据进行相关,以实现在整数倍频偏估计和小数倍频率偏移算法中所需要的前后两个符号的对应导频相关运算,其相关结果为32位的复数据。
整数倍频率偏移估计模块
将相关单元输出的复数据的实虚部符号位送到整数倍频偏估计单元中进行整数倍频偏估计。为了节省芯片资源,这里我们将估计整数倍频偏的算法加以简化,用相关后的复数据在导频位置上的实虚部的符号位来估计整数倍频偏值。下面的仿真的电路波形图证明这样实现整偏估计算法是可行的。它的输入为相关单元输出的复数据实虚部的符号位和此复数据的载波同步位置,输出为整数倍频偏估计值。