开关电源EMI滤波器设计
时间:2023-09-29 10:36来源: 作者: 点击: 次摘要:分析了一种典型的电路,利用Pspice软件对其传导电磁干扰进行仿真研究,以TDK公司提供的元器件模型,提出了一种二阶无源滤波器,完全消除了电路输出信号中的尖峰干扰,抑制了电路中的共模、差模噪声。同时,研究源和负载理想、非理想阻抗特性对滤波器插入损耗的影响,具有一定的意义。
关键词:;寄生参数;尖峰干扰;TDK
开关电源以其体积小、重量轻、效率高、性能稳定等方面的优点,广泛应用于工业、国防、家用电器等各个领域。然而,开关电源中功率半导体器件的高速通断及整流二极管反向恢复电流产生了较高的du/dt和di/dt,它们产生的尖峰电压和浪涌电流成为开关电源的主要干扰源。文中给出的电源滤波器元件主要基于TDK公司提供的模型,该模型考虑了元件的高频寄生参数,更符合工程应用。
1 开关电源产生机理
1.1 开关电源的电磁干扰源
(1)开关管产生干扰。开关管导通时由于开通时间很短及回路中存在引线电感,将产生较大的du/dt和较高的尖峰电压。开关管关断时间很短,也将产生较大的di/dt和较高的尖峰电流,其频带较宽而且谐波丰富,通过开关管的输入输出线传播出去形成传导干扰;
(2)整流二极管反向恢复电流引起的噪声干扰。由于整流二极管的非线性和滤波电容的储能作用,二极管导通角变小,输入电流成为一个时间很短,而峰值很高的尖峰电流,含有丰富的谐波分量,对其他器件产生干扰。二级滤波二极管由导通到关断时存在一个反向恢复时间。因而,在反向恢复过程中由于二极管封装电感及引线电感的存在,将产生一个反向电压尖峰,同时产生反向恢复尖峰电流,形成干扰源;
(3)高频变压器引起问题。隔离变压器初、次级之间存在寄生电容,这样高频干扰信号很容易通过寄生电容耦合到次级电路,同时由于绕制工艺问题在初、次级出现漏感将产生电磁辐射干扰。另外,功率变压器电感线圈中流过脉冲电流而产生电磁辐射,而且在负载切换时会形成电压尖峰;
(4)二次整流回路干扰。开关电源工作时二次整流二极管、变压器次级线圈和滤波电容形成高频回路,向空间辐射噪声;
(5)元器件寄生参数引起的噪声。主要是开关管与散热片、变压器初、次级的分布电容及其漏感形成的干扰。
1.2 共模、差模传导干扰路径
共模干扰主要为相、中线干扰电流通过M1漏极与散热片之间的耦合电容通过接地线形成回路,差模干扰则在相线与中线间形成回路,干扰路径如图1所示。
参阅资料对比发现,如果将设计的EMI滤波器置于电网电源与Lisn之间,可以滤除来自交流电网的传导性性电磁干扰,但是并没有考虑开关电源电路中的传导性共、差模电磁干扰和输出信号中的强尖峰干扰。因此,有必要在开关电源输出端添加EMI滤波器用来进行干扰抑制,如图2即文中提出的开关电源相对应的二阶无源EMI滤波器结构。其中,开关电源输出为DC 30 V±1%。