传感器技术网移动版

主页 > 技术方案 > 环境传感

以太网供电(PoE):一种节能的以太网方案

引言:交换机耗电情况


在现代网络架构中,信息技术和数据中心管理人员正在为降低交换机、路由器和服务器设备功耗寻找绿色可选。这就需要市场上有更多环保产品,从而降低运营成本。举例来说,1993年全年的互联网流量总计达几百TB。而在17年后的2010年,每秒的互联网流量就达几百TB。事实上,在今天,超过50%的数据中心运营费用用于设备冷却,即为风扇和空调系统提力。

传统的网络设备设计要求高性能,而对功耗和能效没有清晰的衡量标准。具体来讲,能效与
支持协议(协议)的网络设备脱节。由此导致的结果是,在网络市场领域,设备功耗飞速增长,尤其是高频应用处理器的设备功耗。

考虑到每年有超过三亿个以太网交换机端口售出,由闲置线路引起的电能耗损产生了一个值得关注的重大而普遍的问题。IEEE以太网规范应运而生,目标是大幅降低每年售出的六亿多个以太网端口的功耗。然而,这一规范无法应对这一情况:当以太网系统部署后,绝大部分的电能损耗发生在以太网供电子系统中——而不是在数据部分。

2010年,近七千万个以太网供电系统交换机端口被销售到市场上。对于部署由以太网系统提供电力支持的IP电话、WLAN网络、IP安全应用及其他应用的企业来说,这是他们关注的焦点。举例来说,一个标准的48端口以太网交换机仅须分配50瓦至80瓦功率的电力在传统的以太网交换机和收发器集成电路上。而该交换机在以太网供电系统上,却需要供应370瓦至740瓦功率的电力。这一8:1的对比系数意味着,以太网供电系统能效上的小幅提升就可以大大提高以太网交换机的整体能效。


传统的以太网(EEE)

为了应对不断增长的以太网交换机功耗,IEEE研究制定并批准了802.3az标准。这一标准称之为以太网标准(EEE)。该标准为以太网Base-T收发器(100Mb、1GbE及10GbE)及背板物理层提供低功耗闲置(LPI)模式应用。

节能以太网标准基于这样一个基本理念:在设备利用率低的时段或闲置期,断开电源连接,而在数据传输时期,恢复电源连接。这一理念基于一个众所周知的事实,那就是标准网络环境下的客户端及服务器以太网连接在大部分时间处于闲置状态。其数据流量高峰期只是偶尔发生。

EEE对低功耗闲置(LPI)协议进行详细规定。该协议对物理连接两端通过发送信号进行控制,实现对连接设备省电模式的快速调整——包括在无数据传输期间,关闭电源,停止系统数据传输和接收功能。此外,节能以太网标准还对另一个协议进行详细规定。此项协议保持在低功耗闲置(LPI)模式下的以太网物理层系统的运行参数随时更新,从而保持连接稳定,防止连接断开。此外,节能以太网标准还对一侧的信号协议进行详细规定。这一协议显示物理连接何时需要并实现连接快速恢复。结果是,在高水准的以太网物理层技术中,低功耗闲置(LPI)应用可以为每个以太网连接节省一瓦功率。尽管如此,节能以太网标准不能应对以太网供电能耗损问题,也不能解决如何降低能耗的问题。

以太网供电系统()的节能机制

利用以太网供电,而不是传统的交流电(AC)供应模块应用于电力设备的一个重要理由是,它能远程关闭设备,还可以减少电缆布线量。通过控制设备的开启与关闭,大量的电能得到节省。举例来说,通过中央控制点,在夜间使用的摄像机在白天可以关闭使用(反之亦然);IEEE 802.11 WLAN接入点可以开启,从而提高覆盖和带宽,或是在低利用期关闭;而IP电话在夜间、周末或闲置期可以关闭。

在多端口设备中,相关数据也证明了以太网供电的优势。一个单独的交流电供电模块必须供应一台设备所有运行模式所需的电能,而多个以太网供电设备的共享式供电模式可以根据平均电能利用率进行调整——这就如同已经被应用多年的POTS电话技术。这大大降低闲置期交换式电力供应的电能耗损量。而节省的这部分电能通常占到最高电力供应负载量的10%-20%。而当有必要提供更多的电力时,附加的电力供应设备可以安装到以太网供电交换机和以太网中间设备中,从而保证电力供应量根据业务的增长需求进行调整。

(责任编辑:admin)