LED透雾性实验及初步研究
时间:2023-09-25 22:57 来源: 作者: 点击:次
可见光在下雪、下雨和有雾时的透过能力下降,因此,这样的恶劣天气对交通安全造成了很大威胁。可见光在雪花、雨滴和雾滴中传播时,由于散射和吸收等作用,使其可见性受到很大影响。一些机构曾做过相关,并给出了一些可见光在这些严峻天气条件下传播的特性和结论。 对于可见光在雾的环境中传播,Bobsy Arief KURNIAWAN测量了在不同雾浓度和雾滴大小条件下,人眼对亮度的响应。他采用了红黄蓝绿四种颜色光,以及他们每两种颜色之间的颜色,构成了十二种颜色光进行,并得出了红黄光和红蓝光穿过雾时亮度最高。同时,蓝光在浓雾中的可见性最差。而在下雨和下雪的环境中,大多集中在对黄光和白光的选择上。人们通常认为黄光比白光好,因为在相同亮度下黄光带来的眩光没有白光严重。这个常识性的认识被John D. Bullough’s的研究证实了。他得出了在相同光强下,黄光比白光受到反向散射的影响小,因而眩光小的结论[2,3]。 作为对可见光在恶劣天气条件下传播特性的初步研究,本文所述主要关注可见光在雾中的传播情况。与Bobsy Arief KURNIAWAN的不同,本实验采用了四种单色作为光源,这就避免了Bobsy的方法中可能出现的同色异谱现象。实验采用加湿器产生雾,测量四种单色在不同雾浓度下的照度衰减。雾的浓度由一个白色LED在相应浓度下的照度衰减值来描述。通过照度衰减曲线得到了具有最佳透雾能力的单色可见光。本实验从量化的角度分析了单色可见光对雾的穿透特性。实验结论对道路照明设备的选择具有一定的指导意义。 2.实验方法 2.1实验装置 Fig. 1 System setup of the experiment in side view 如图1所示,1为光源,四只单色LED均为1W;2为雾气箱,长30cm,宽37cm,高32cm,内表面涂黑;3为加湿器,通过22个档位产生不同度的雾;4为连通管,将加湿器产生的雾通入雾气箱;5为探头,正对着光源;6为照度计,用来采集照度值。 2.2 实验条件 为防止外界光对实验结果产生影响,整个实验在暗室中进行。同时,实验室的门窗均紧闭,以防止外界气流对实验的干扰。实验室保持恒温25℃。 该实验最为重要的部分是在实验室中对雾进行模拟。由于实验对雾的要求是具有均匀性、稳定性,并且能够较方便地调节浓度,因此该实验不能雾天在室外进行,必须在实验室人工造雾。实验采用加湿器喷出的雾状水气来模拟自然界中的雾。大多数雾滴取样法获得的自然界中存在的雾,其粒子直径的范围是4~10μm。而采用离心式加湿器可打出直径为5μm[4]的细雾,恰在天然雾粒子大小的范围之内。另外,采用离心式加湿器可避免蒸汽式加湿器打出的高温水雾可能对照度计探头产生的影响。 通过光谱仪采集得到实验所用四种单色LED的特征参量峰值波长和半波宽,依次为:红色LED(λp=625nm,FWHM=50nm)、黄色LED(λp=594nm,FWHM=13nm)、绿色LED(λp=514nm,FWHM=45nm)、蓝色LED(λp=459nm,FWHM=22nm)。实验在不同雾浓度下测量各单色LED的透过照度。 2.3 实验过程 本实验通过加湿器的六个档位(0档、10档、12档、14档、16档和18档)产生不同浓度的雾,雾浓度随着档位的上升而上升。 首先,在无雾的条件下点亮红色LED,通过照度计测得此时的照度值作为初始照度。在某一特定档位下,开启加湿器两分钟。关闭加湿器10秒后,雾在透雾箱内已基本均匀分布,测得此时的照度值作为红色LED在此浓度下的透过照度。透过照度与初始照度的比值即为透过率。等待一段时间,当透雾箱内的雾气散去后,改变加湿器档位并重复上述实验。每种颜色的LED都重复上述过程。取三次实验的平均值作为最后结果。 2.4 雾浓度的表征 本实验中,雾的浓度通过一个白色LED(λp=492nm, Tc=6000K)在相应档位雾浓度下的透过率来定义。也就是说,白色LED的透过率数值表征了对应雾环境的浓度值。白色LED的透过率采用了与其他四种单色LED透过率相同的方法获得。在0档(无雾)、10档、12档、14档、16档和18档的白光透过率如表1所示。 表 1 不同档位下白光LED的透过率 Table.1 Transmission factor of white LED under different levels
|