传感器技术网移动版

主页 > 技术方案 > 环境传感

具有自动增益控制的射频振荡器稳定性分析

摘要:设计了一个(AGC)的电路来稳定功率的输出幅度,然而在加入AGC负反馈环路之后,该环路可能会产生自激振荡,使得输出的幅度更加不稳定。通过对整个电路系统传递函数的分析,采用调节反馈电路中三极管发射极电阻阻值的方法,使该电路工作在稳定的状态,进而达到稳定输出幅度的目的。
关键词:振荡器;;;传递函数;稳定性

稳定的振荡幅度是振荡器应用的非常关键的指标,幅度稳定技术往往都是高性能振荡器需要采用的技术,该技术在电子对抗、雷达、制导、卫星跟踪、宇宙通信及时间与频率计量等领域中的应用尤其重要。目前国内外已有一些相关的技术用于实现振荡幅度的,一般所采用的方法是:通过比较器鉴别振荡幅度超过一定值的点并通过运算放大器等电路处理将超过的量转化为对应的控制信号来调整振荡幅度,或者是采用模数转换器(ADC)和数模转换器(DAC)来跟踪振荡输出信号幅度的大小并生成对应模拟量控制振荡器偏流来调节输出幅度。这些方法的基本思想都是通过一个负反馈电路,将振荡器的输出幅度信息转变为与振荡幅度成比例的控制量,来控制振荡器的输出幅度,然而加入负反馈电路之后,反馈环路很可能发生自激振荡,从而影响输出幅度,使得振荡器输出的幅度更加不稳定,无法达到稳定幅度的目的。这就要求对整个电路系统做稳。
本文设计了一个自动控制的电路来稳定功率振荡器的输出幅度,通过对整个设计电路的传递函数分析,来避免反馈环路产生振荡,使整个电路工作在稳定的状态。

1 主体电路的设计
系统原理框图如图1所示,AGC环路由峰值检测器,低通滤波器,比较器以及控制信号产生器组成。振荡器的输出幅度被峰值检测器检测出后经过低通滤波与参考电平进行比较后产生控制信号,通过控制振荡器中功率MOSFET的栅源电压来使得输出的幅度稳定。


设计了一个频率为13.56 MHz,输出功率为100 W,谐振阻抗50 Ω,品质因数Q=5的稳幅功能的功率振荡器,图2为详细的电路设计,本设计采用克拉泼(Clapp)振荡器结构,功率MOSFET选取ARF461A,通过对静态工作点的设置,使振荡器的工作状态由起振时的AB类状态滑到稳定时的C类放大状态。输出的信号通过C8,C9分压,送入LTC5507进行峰值检测,检测后的峰值信号经运放LM324与参考电压进行比较后产生控制电压,控制电压经过放大后通过对三极管的控制,来调整振荡幅度的变化。振荡器幅度增大时,G点电压将会下降,ARF461A的栅源电压将会降低,进而调整输出幅度,使其输出减小。同理,当幅度减小时,ARF461A的栅源电压会升高,输出幅度将会增加。

2 系统稳
系统结构图如图3所示,A1为控制电压与漏极电流基波分量之间的传递函数,G1(s)为漏极电流基波分量与输出幅度的传递函数,A2为分压系数等于1/50,G2(s)为峰值检测电路的传递函数,A3为运放的放大倍数等于6。

(责任编辑:admin)