基于GPRS与ZigBee技术的公交车智能监控系统
时间:2023-09-25 22:57 来源: 作者: 点击:次
引言 目前,除始发站和终点站外,中间的众多站无法保证准点;依靠驾驶员按键操作报站,难免出现错误而误导乘客;候车人不知道等待的运行状况。为此,本文开发了一种基于和ZigBee的运行监控系统,以期能较好的解决这些问题。 在该系统中,远距离无线通信采用的技术和近距离无线通信采用的互为补充,在扩宽监测范围的同时也提高了监控系统的智能水平。这种监测网络模型具有一定的通用性,可以推广应用到石油和煤矿生产等工作地域范围较广的工业现场。 1 系统整体设计 该系统由公交车监控中心、公交车站台的站台监测器和公交车上的智能无线终端(以下简称监控中心、监测器和无线终端)组成,如图1所示。无线终端通过向监测器报告公交车到达和离开的时间,监测器接收无线终端发送的信号,检验该车的“标识号”,识别到来车辆,并将该车的到达时间、车号等信息通过网络传送到监控中心。 公交车根据检测器发送的站台标识符识别站台名称,通过语音和LED屏报站。此后,监测器不断检测该无线终端发送的信号强度,当其减弱到一定程度时,即认为该车离开本站,随即向监控中心发出相关信息。监控中心对监测器发来的信息进行存储,根据接收的信息判断公交车行驶路段,并将信息发送给监测器,监测器通过运行状态指示灯显示给候车者。 2 硬件设计 2.1 监测器 2.1.1 整体设计 监测器组成如图2所示,该部分由CPU、无线GPRS通信模块、无线ZigBee通信模块、公交车运行状态指示灯和其他外围电路组成。CPU选择三星公司的S3C44B0X,该处理器具有低功耗、高性能、高性价比的优点,同时具有丰富的内置部件,极大减少了系统电路中除处理器以外的元器件配置,降低了成本并减少了系统的复杂度。同时具有大量I/O端口,可以实现对大量状态指示灯的控制。GPRS既能支持间歇的爆发式数据传输,又能支持偶尔的大量数据传输,数据传输速度快,按流量计费。因此GPRS适合于这种通信频繁、数据量大、实时性要求较高的监控系统。该设计选择GPRS作为监测器与监控中心无线连接方式,监测器与公交车终端通信采用ZigBee无线通信方式。ZigBee是一种近距离、低复杂度、低功耗、低速率、低成本的无线网络技术。设计中ZigBee通信模块选用Freescale公司的MC13192,其工作频率是21405~21480GHz,采用直接序列扩频的通信技术,数据传输速率为250kb/s,达到设计要求。 2.1.2 GPRS通信模块 GPRS模块选择法国WAVECOM公司生产的Q2403,该模块符合ETSI标准GSM0707和GSM0705,下载速度为5316kb/s,上传速度为2618kb/s。模块提供一个符合V24协议的异步串行通信接口,支持加密算法,集成射频电路和基带于一体,性能稳定,可以快速、可靠的传输。Q2403和S3C44B0X通过串行接口相连接,如图3所示。 2.2 无线终端 无线终端主要由音频播放模块、按键响应电路、无线ZigBee通信模块和LED屏显示模块组成,见图4。音频播放模块负责录制并播放语音报站信息。 按键响应电路负责响应公交车司机的按键操作。 2.2.1 ZigBee无线通信模块 由于MC13192的射频信号采用差分方式,而倒F型天线为单端天线,所以在芯片和天线间需使用平衡/非平衡阻抗转换电路,以达到最佳收发效果。 电路中使用了UPG2012TK和巴伦电路专用芯片LDB212G4020C。UPG2012TK是NEC公司针对手机和其他L-波段应用制造的镓砷单刀双掷(SinglePoleDoubleThrow,SPDT)射频开关,其工作频率为015~215GHz,具有非常低的介入损耗和很高的隔离性能。MC13192和S3C44B0X的连接如图5所示。 2.2.2 LED屏显示模块 设计中的LED点阵屏幕由4个LED点阵模块构成,模块需要阳极与阴极共同控制,其行为阳极,列为阴极,所以把LED点阵屏幕驱动电路分为行驱动电路与列驱动电路两部分设计,如图6所示。行驱动电路采用16个8050D型NPN三极管和16个上拉电阻共同完成驱动。列驱动电路则是由16个S8550D型PNP三极管和16个上拉电阻共同完成驱动。 因而失真小,使用方便,不需专用语音开发工具,成本低廉。键盘采用独立式键盘,驱动芯片采用ZLG7290。RS232通讯部分由MAX233A完成。复位部分采用专业复位电路芯片IMP811来实现。 (责任编辑:admin) |
- 上一篇:PC串口实现脉冲编码通信
- 下一篇:一种手机支付的POS设计与应用